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Abstract. This paper is focused on uncertainty quan-
tification (UQ) of an existing bridge structure repre-
sented by non-linear finite element model (NLFEM).
The 3D model was created according to the original
drawings and recent inspections of the bridge. In order
to reflect the realistic mechanical behavior, the mathe-
matical model is based on non-linear fracture mechan-
ics and the calculation consists of the three construction
stages. The single calculation of the NLFEM is very
costly and thus even the elementary task of stochastic
analysis – the propagation of uncertainties through a
mathematical model – is not feasible by Monte Carlo-
type approach. Thus, UQ is performed via efficient
surrogate modeling technique – Polynomial Chaos Ex-
pansion (PCE). PCE is a well-known technique for
approximation of the costly mathematical models with
random inputs, reflecting their distributions and offer-
ing fast and accurate post-processing including statis-
tical and sensitivity analysis. Once the PCE was con-
structed, it was possible to analyze all quantities of in-
terest (QoIs) and analytically estimate Sobol indices as
well as the first four statistical moments. Sobol indices
directly measure the influence of the input variability to
a variability of QoIs. Statistical moments were used for
reconstruction of the probability distributions of QoIs,
which will be further used for semi-probabilistic assess-
ment. Moreover, once the PCE is available it could be
possible to use it for further standard probabilistic or
reliability analysis as a computationally efficient ap-
proximation of the original mathematical model.
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1. Introduction

The analysis of existing structures is of great impor-
tance since it is often necessary to assess the reliability
of structures reaching their designed lifetime or adapt
them to different loading conditions. Nowadays, it is
common to create costly mathematical models as digi-
tal twins, which are able to greatly estimate real behav-
ior of the existing structures. However, existing struc-
tures are associated with many uncertainties regarding
material properties possibly affected by deterioration,
quality of execution and maintenance, local environ-
mental effects resulting in defects. Such uncertainties
could play a crucial role in reliability assessment of
existing structures [1] and thus it is necessary to ex-
tend deterministic analysis to stochastic analysis. The
advanced stochastic analysis is especially valuable in
the case of existing concrete structures such as bridges
since there is a high variability of the basic variables
assumed in the mathematical models [2]. Standard
method for propagation of uncertainties through the
mathematical model and analysis of QoI is Monte Carlo
approach, which needs high number of repetitive sim-
ulations with randomly generated realizations of the
input random vector.

The stochastic analysis of costly mathematical mod-
els often solved by finite element method is typically
not feasible due to computational requirements caused
by a combination of two aspects: large number of
repetitive deterministic simulations used in probabilis-
tic analysis with high computational cost per simu-
lation. Therefore, it is often necessary to construct
a computationally efficient approximation – surrogate
model. Surrogate models are constructed from given
experimental design, i.e. set of realizations of input
random vector and corresponding results of the origi-
nal mathematical model. Although there are various
surrogate models in scientific literature, here we use
PCE thanks to its possibilities for efficient and accu-
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rate UQ including statistical and sensitivity analysis.
Analytical post-processing is a unique feature of PCE
and it represents a significant advantage in compari-
son to other popular surrogate models such artificial
neural networks [3, 4]. The paper is particularly fo-
cused on UQ of an existing concrete bridge using PCE
constructed by advanced algorithms implemented in a
software package UQPy.

2. Polynomial Chaos
Expansion

2.1. Theoretical Background

Evaluation of a mathematical model representing phys-
ical system in civil engineering is typically costly and
thus it is necessary to create an efficient approxima-
tion. One of the most popular approaches is PCE [5],
which represents the output variable Y as a polyno-
mial expansion gPCE of an another random variable ξ
called a germ with given distribution

Y = g(X) ≈ gPCE(ξ), (1)

A set of polynomials, orthogonal with respect to the
probability distribution of the germ, are used as a ba-
sis functions. The orthogonality condition for all j ̸= k
is given by the inner product defined for any two func-
tions ψj and ψk with respect to the probability density
function of ξ

⟨ψj , ψk⟩ =
∫
ψj(ξ)ψk(ξ)pξ(ξ) dξ = 0. (2)

Polynomials ψ orthogonal with respect to a selected
probability distributions pξ can be chosen according to
Wiener-Askey scheme [6] or created directly by Gram-
Schmidt orthogonalization. In this paper we use nor-
malized polynomials with inner product equal to the
Kronecker delta δjk.

In the case of X and ξ being vectors containing M
random variables, the polynomial Ψ(ξ) is multivariate
and it is built up as a tensor product of univariate or-
thogonal polynomials. The quantity of interest (QoI),
i.e. the response of the mathematical model Y = g(X),
can then be represented, according to Ghanem and
Spanos [7], as

Y = g(X) =
∑

α∈NM

βαΨα(ξ), (3)

where α ∈ NM is a set of integers called the multi-
index, βα are deterministic coefficients and Ψα are
multivariate orthogonal polynomials.

Naturally, the approximating function given by
Eq. (3) must be truncated to a finite number of terms

P . There are various schemes for truncation of mul-
tivariate basis sets (see Fig.1 for a comparison). The
simplest approach is a common tensor product, though
it suffers significantly from a curse-of-dimensionality.
Therefore, common approach is total-order truncation
by retaining only terms whose total degree |α| is less
than or equal to a given p:

AM,p =

{
α ∈ NM : |α| =

M∑
i=1

αi ≤ p

}
. (4)

In case of high p and M , it possible to use addi-
tional “hyperbolic” reduction of the truncated set [8].
Hyperbolic truncation neglects high-order interaction
terms, though it is described by hyper-parameter q
which must be chosen in advance. However, if there
is reliable information about the mathematical model
(such as an effect of sparsity often present in physics
phenomena), it is possible to drastically reduce num-
ber of basis functions and thus number of unknown
deterministic coefficients. The most advanced but also
the most challenging approach is represented by vari-
ous sparse solvers (such as Least Angle Regression [9]
used further), which identifies the most important ba-
sis functions from given set. However, sparse solvers
are highly dependent on given ED, i.e. they need addi-
tional information in comparison to the previous meth-
ods.

2.2. Non-intrusive approach

Truncated PCE can be seen as a linear regression
model with deterministic coefficients β, which can be
thus obtained by ordinary least square (OLS) regres-
sion. Estimated β thus minimize the sum of the
squares of the differences between the results of original
mathematical model Y corresponding to he input ran-
dom vector X together called the experimental design
(ED) and the results of surrogate model. Specifically,
the vector of deterministic coefficients β is calculated
using data matrix Ψ as

β = (ΨTΨ)−1 ΨTY. (5)

The number of deterministic coefficients is directly
connected to P , generally dependent on the number
of input random variables M and the maximum to-
tal degree of polynomials p as can be seen in Eq. 4.
Unfortunately, this leads to computationally highly de-
manding problems in case of large stochastic non-linear
models. In order to reduce P , it is possible to select
the best model represented by sparse set of basis func-
tions. The best model selection is a broad scientific
topic and several methods were proposed, here we use
Least Angle Regression (LAR) [9, 8].
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Fig. 1: Graphical comparison of basis sets constructed by selected methods for 2-dimensional examples with maximum polynomial
order p = 4 for both input random variables.

Naturally, it is necessary to measure the approxi-
mation error of PCE . Error estimation in surrogate
modeling of costly models is a specific and challenging
task, since there is not enough samples for validation
and one must usually use identical ED for training as
well as for validation. Commonly used technique is the
coefficient of determination R2, which is well known
from machine learning and statistics. However, this
measure often leads to over-fitting and thus scientists
are focused on more advanced techniques such as leave-
one-out cross validation error Q2. The estimated error
is based on residuals between predictions of the sur-
rogate model and the results of original mathematical
model measured on ED, while excluding one realiza-
tion in construction of surrogate model. The errors are
calculated for all realizations in ED and further the av-
erage error is estimated. In case of PCE, it is possible
to get Q2 analytically from a single PCE based on all
realizations in ED as follows [10]:

Q2 = 1−

1
nsim

∑nsim

i=1

[
g(x(i))−gPCE(x(i))

1−hi

]2
σ2
Y,ED

, (6)

where σ2
Y,ED is a variance of experimental design ob-

tained from results of the original mathematical model
and hi represents the ith diagonal term of the matrix
H = Ψ

(
ΨTΨ

)−1
ΨT .

2.3. Statistical Moments

The PCE is very efficient tool for post-processing al-
lowing for analytical derivation of statistical moments
of the QoI. The mean value is obtained from general
formula of the first statistical moments as

µY =
〈
Y 1

〉
=

∑
α∈NM

βα

∫
Ψα(ξ) pξ

(
ξ
)
dξ. (7)

Considering the orthonormality of the polynomi-
als, the original integration is reduced to simple
post-processing of the PCE deterministic coefficients.

Namely, the mean value is equal to the first determin-
istic coefficient of the expansion

µY =
〈
Y 1

〉
= β0. (8)

The second raw statistical moment,
〈
Y 2

〉
, is written as

〈
Y 2

〉
=

∑
α∈A

β2
α

∫
Ψα (ξ)

2
pξ (ξ) dξ =

∑
α∈A

β2
α ⟨Ψα,Ψα⟩ .

(9)

Similarly as in case of the mean value, it is possible to
obtain the variance as the sum of all squared determin-
istic coefficients except the intercept (which represents
the mean value), i.e.

σ2
Y =

∑
α∈A
α ̸=0

β2
α. (10)

The third and fourth statistical moments can be ob-
tained similarly from deterministic coefficients for Her-
mite and Legendre polynomials [11], though its com-
putation might be computationally expensive for large
basis sets.

2.4. Sobol Indices

One of the most important tasks in UQ is the anal-
ysis of variance – the analysis of the influence of in-
put variables on the variance of a mathematical model.
Such information may be utilized to practically reduce
the uncertainty of important input variables (material
characteristics) used in mathematical model by exper-
iments and measurements, which leads to a significant
reduction in the uncertainty of the quantity of inter-
est. Herein, the well-known ANOVA method repre-
sented by Sobol indices is employed. Unfortunately,
it is still highly computationally demanding to evalu-
ate Sobol indices via the classical double loop Monte
Carlo method. However it was shown that there is a
connection between PCE and the Hoeffding-Sobol de-
composition [12] allowing for analytical derivation of
Sobol indices.
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PCE can be rewritten in the form of the Hoeffding-
Sobol decomposition by a simple reordering of the
terms:

gPCE (x) = β0 +
∑
α∈Au

βαΨα (ξ) , (11)

where the set of basis multivariate polynomials depen-
dent on selected input random variables Xu is

Au =
{
α ∈ AM,p : αk ̸= 0 ↔ k ∈ u

}
. (12)

Therefore, the first order Sobol indices can be analyti-
cally obtained directly from PCE as follows [12]:

Si =

∑
α∈Ai

β2
α

σ2
Y

, (13)

where basis functions are selected as:

Ai =
{
α ∈ AM,p : αi > 0, αj ̸=i = 0

}
. (14)

Important information about the influence of input
variables and all interactions can by expressed by to-
tal Sobol indices representing the first order influence
and influence of all interactions, which can be obtained
similarly from the following basis functions:

AT
i =

{
α ∈ AM,p : αi > 0

}
. (15)

2.5. Uncertainty Quantification with
Python (UQPy)

The presented theoretical methods together with ad-
vanced iterative algorithms [13] were recently imple-
mented to the sofware package UQPy [14]. UQPy
represents multi-purpose complex software package for
Python containing recently developed techniques for
uncertainty quantification including PCE, more details
can be found on official website, see QR codes in Fig. 2.
UQPy contains several modules associated to common
techniques for uncertainty quantification including sur-
rogate models. PCE module in UQPy contains state-
of-the-art techniques developed for advanced statistical
sampling, efficient construction of the approximation
(e.g. truncation schemes, sparse solvers) and its post-
processing (e.g. Sobol indicies and complex statistical
information derived from PCE). UQPy can be easily
used for practical applications as well as for research,
since it is an open-source package and anyone can con-
tribute to the UQPy code once their contributions pass
the quality checks.

3. Application: Concrete
Bridge

PCE and UQPy is applied for statistical and sensitiv-
ity analysis the existing post-tensioned concrete bridge

Fig. 2: UQPy software: left) QR code leading to Git-Hub repos-
itory containing the open-source code in python, mid-
dle) the graphical logo representing the package, right)
QR code leading to documentation of the package.

with three spans modeled as three simple spans. The
super-structure of the mid-span is 19.98 m long with
total width 16.60 m and it is crucial part of the bridge
for assessment. In transverse direction, each span is
constructed from 16 bridge girders KA-61 commonly
used in the Czech Republic. Load is applied according
to national annex of Eurocode for load-bearing capac-
ity of road bridges by a special vehicle according to EN
1991-2.

The NLFEM is created using software ATENA Sci-
ence based on theory of non-linear fracture mechanics
[15]. In order to reflect complex behavior of the bridge,
the numerical model contains three construction phases
as illustrated in Fig.3. The NLFEM consists of 13,000
elements of hexahedra type in the major part of the
volume and triangular ‘PRISM’ elements in the part
with complicated geometry. Reinforcement and ten-
dons are represented by discrete 1D elements with ge-
ometry according to original documentation. The nu-
merical model is further analysed in order to investi-
gate three limit states: the ultimate limit state (ULS)
(peak of a load-deflection diagram); first occurrence of
cracks; decompression of prestressed concrete.

The stochastic model contains 4 random material pa-
rameters of a concrete C50/60: Young’s modulus E ;
compressive strength of concrete fc; tensile strength
of concrete fct and fracture energy Gf . Characteristic
values of E, fct, Gf were determined from fc according
to formulas implemented in the fib Model Code 2010
[16] (Gf , E) and prEN 1992-1-1: 2021 (fct). The last
random variable P represents prestressing losses with
CoV according to JCSS: Probabilistic Model Code [17].
The stochastic model is summarized in Tab. 1. Mean
values and coefficients of variation were obtained ac-
cording to prEN 1992-1-1: 2021 (Annex A) for adjust-
ment of partial factors for materials.

Tab. 1: Stochastic model of the numerical example.

Var. Mean CoV [%] Distrib. Units
fc 56 16 Lognormal [MPa]
fct 3.64 22 Lognormal [MPa]
E 36 16 Lognormal [GPa]
Gf 195 22 Lognormal [Jm2]
P 20 30 Normal [%]
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Fig. 3: Three construction phases of the bridge represented by NLFEM.

The experimental design (ED) contains 30 numer-
ical simulations generated by Latin Hypercube Sam-
pling (LHS). Note that each simulation takes approx-
imately 24 hours and construction of the whole ED
took approx. 1 week of computational time (PC with
12 cores and 64GB RAM). The PCE was created by
UQPy and implemented iterative algorithm for selec-
tion of the best basis functions [13] and various maxi-
mum polynomial orders. From the estimated accuracy
measured by Q2, the maximum polynomial order p = 4
was selected for all three limit states. Once the PCE
was created, it was possible to perform analytically sta-
tistical and sensitivity analysis.

Sensitivity analysis in form of Sobol indices was per-
formed for all three limit states. The variability of
decompression limit state is dominantly affected by P
as expected (99%). The limit state of cracking already
reflected influence of material parameters of concrete
as can be seen in Fig. 4. The ultimate limit state was
affected similarly as the second limit state – mainly by
P , followed by Gf and less by E. Therefore it can be
concluded that it is very important to perform addi-
tional survey of the existing structure in order to re-
duce uncertainty in P , since it is dominant variable in
all limit states.

Statistical analysis was performed in sense of estima-
tion of the first four statistical moments directly from
PCE and also Monte Carlo simulation with 106 sim-
ulations used for construction of histograms of limit
states. The first four statistical moments were fur-
ther used for estimation of the analytical probability
density function by Gram-Charlier expansion. Typi-
cal results can be seen in Fig. 5 corresponding to the
decompression. It can be seen that analytical probabil-
ity distribution function (PDF) corresponds very well
to simulated data and thus it can be further used for
estimation of design quantiles etc. Design values of re-
sistance are typically very low fractiles and thus it is
especially important to accurately approximate the cu-

18.6%

79.3%

Total-order Sobol indices

Variables
Ft
Fc
Gf
Ec
P

Fig. 4: Relative Sobol indices of the second limit state.

mulative distribution function (CDF) also in extreme
values. As can be seen in Fig. 6, Gram-Charlier expan-
sion (red) fits very well empirical CDF and it can be
used for estimation fractiles which can not be accessed
from existing ED (blue).
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Fig. 5: Histogram of the first limit state: Decompression of the
prestressed concrete.
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Fig. 6: CDF of the first limit state: Decompression of the pre-
stressed concrete.

4. Discussion & Conclusions

The paper presented an application of PCE in statis-
tical and sensitivity analysis of an existing structure
– the post-tensioned concrete bridge with three spans
represented by NLFEM. The whole process of UQ was
done in the new version of open-source software pack-
age UQPy. It was shown that UQPy and PCE can be
used for probabilistic analysis of real concrete struc-
tures. Note that it is clear from the obtained results
of sensitivity analysis, the dominant influence on resis-
tance has uncertainty of P . Therefore can be recom-
mended to do additional survey of the bridge to reduce
its uncertainty. Note that crossings by special vehicles
require permits and thus surveys of bridges before such
crossings should be prescribed in order to reduce the
uncertainty in P . Moreover obtained results support a
reduction of the stochastic model (and thus dimension-
ality) of the practical example leading to higher com-
putational efficiency of UQ. Further work will be also
focused on reliability assessment of the bridge using ob-
tained results from statistical and sensitivity analysis.
Naturally, it will be necessary to extend the stochastic
model of the example in order to cover additional as-
pects affecting reliability of the bridge. Specifically, re-
liability of post-tensioned concrete bridges is commonly
dominated by corrosion of prestressing tendons [18, 19].
Although a recent survey of the bridge did not present
any existing corrosion, it could be included as addi-
tional uncertain parameter for further studies. More-
over, additional uncertainties in traffic loading can be
also important for further reliability analysis [20].
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